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An alcohol spentanold droplet exhibits spontaneous motion on an aqueous solution, driven by a solutal
Marangoni effect. We found that the droplet’s mode of motion is controlled by its volume. A droplet with a
volume of less than 0.1ml shows irregular translational motion, whereas intermediate-sized droplets of
0.1–200ml show vectorial motion. When the volume is above 300ml, the droplet splits into smaller drops.
These experimental results regarding mode selection are interpreted in terms of the wave-number selection
depending on the droplet volume.
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It is well known that an oil-water system exhibits sponta-
neous agitation, called the Marangoni effectf1g, which is
driven either by a thermal gradientf2g or a chemical concen-
tration gradientf3–5g. We focus here on the latter system,
i.e., a solutal Marangoni effect under isothermal conditions.
A rich variety of spontaneous agitation on oil-water interface
has been reported both experimentallyf6–14g and theoreti-
cally f15,16g. It has been shown that the nature of the self-
agitation is sensitively dependent on the shape and size of
the container, i.e., on the boundary conditionf6–8g. In the
present study, we show that an alcohol droplet driven by a
solutal Marangoni effect selects a certain mode of motion
critically depending on its size. This mode selection is inter-
preted in terms of competition between the droplet size and
the critical wave number in the instability by the Marangoni
effect.

Different modes of spontaneous motion of alcohol drop-
lets are exemplified in Figs. 1 and 2, where the droplets
stained with inksINKSP-55-B, Pilot Corporation, Tokyod are
agitating on 100 ml of aqueous phase containing 2.3 vol %
pentanol in a petri dish with a diameter of 18 cm. The mo-
tion of the droplet was monitored with a high-speed video
camerasMotion Scope PCI, RedLake MASD Inc., San Di-
egod at 60 frames per second at room temperature, and then
analyzed by image-processing software. When the volume is
less than 0.1ml, the droplet maintains a circular shape during
irregular translational motion, as shown in Fig. 1sbd. When
the volume is between 0.1 and 200ml, the droplet shows an
asymmetric morphology and exhibits directional motion by
maintaining its shape, as in Fig. 1scd, where the speed is
almost constant. The average speed in vectorial motion is
greater than that in the irregular translational motion of the
smaller droplet. When the volume is above 300ml, the drop-
let splits into smaller droplets as in Fig. 2. Figure 3 shows a
phase diagram of the modes of droplet motion with a change
in the volume. Corresponding movies are available online
f20g.

The experimental trend in volume-dependent mode selec-
tion can be interpreted by considering the wavelength due to

the Marangoni instability and the length scale of the droplet.
When a droplet is large enough to accept the characteristic
length of Marangoni instability, it exhibits morphological de-
formation. Once the droplet is deformed, the variation in
curvature around its periphery causes asymmetry in the sur-
face tension, which drives the directional motion of the drop-
let. In the experiment in Fig. 1scd, the concentration gradient
of pentanol in the convex region of the droplet is higher than
that in the concave region of the droplet due to diffusion
depending on the shape of the boundary. Therefore, the in-
terfacial tension gradient in the convex region is higher than
that in the concave region and the droplet is forced to move
toward the direction from the concave region to the convex
region f8g. This spontaneous motion has the effect of main-
taining the shape anisotropy. In contrast, in the case of a
smaller droplet, the circular shape is maintained under Ma-
rangoni instability, and the emergence of a large acceleration
force is inhibited. As a result, the average speed of such a
circular droplet is less than that of a larger droplet and the
spontaneous agitation is rather irregular. The interface is sig-
nificantly destabilized only when the wave number of the
self-agitation due to the Marangoni effect is less than the
inverse of a certain wave number, 1/kc. This mode selection
is shown schematically in Fig. 4sbd.

Next, we calculate the wave number when the interface is
destabilized by a solutal Marangoni effect by considering a
small perturbationsy=A sinkx, uAu!1d. When a small wave
is induced along the interface, generally the wave tends to be
damped due to interfacial tension, the strength of which per
unit length isg1. On the other hand, the concentration gra-
dient in the convex region of the wave is higher than that in
the concave region due to diffusion depending on the shape
of the boundary. Therefore, the interfacial tension gradient in
the convex region is higher than that in the concave region
and the difference in the interfacial tension gradient induces
wave growth. The force strength per unit length isg2. When
g2.g1, the wave becomes unstable. To simplify the treat-
ment, we adopt the approximation that the shape of the wave
consists of parts of a circle, as in Fig. 4sad.

In this case, the radius of the circle,R, and the length of
the interface per wavelength,L, are derived as

R=
A2 + sp/2kd2

2A
<
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L = 4RarcsinSp/2k

R
D < 2

p

k
S1 +

8A2k2

3p2 D . s2d

Supposing thatg1 is proportional to]fL / s2p /kdg /]A,

g1 = a
]

]A
S L

2p/k
D = aAk2, s3d

wherea is a constant.

g2 is proportional to the difference between the interfacial
tension gradients in the convex and concave regions. Assum-
ing that the interfacial tension gradients are proportional to
the concentration gradients of pentanol,

g2 = bFUSUdc

dr
U

conv
DU − USUdc

dr
U

conc
DUG , s4d

where udc/druconv is the concentration gradient perpendicular
to the interface in the convex region,udc/druconc is that in the
concave region andb is a constant. The dynamics of the
concentration of pentanol on the surface of the aqueous
phase,c, is given by

]c

]t
= D¹2c − asc − cad − bsc − cwd, s5d

whereD is the diffusion coefficient of pentanol on the sur-
face,a is the evaporation rate of pentanol,b is the dissolu-
tion rate of pentanol,ca is the concentration at the gas-liquid
equilibrium, andcw is the concentration at the surface-bulk
equilibrium in the aqueous phase. We impose the Dirichlet
condition at the pentanol-water interface, i.e.,c=c0 at the
interface, wherec0 is the concentration of the water-rich part
under the coexistence condition. The stationary solutions
with rotational symmetry of Eq.s5d sFig. 5d are adopted in
order to evaluateg2. Thus, at the convex region,

USUdc

dr
U

conv
DU = sc0 − GdÎa + b

D

K1sR̃d

K0sR̃d
, s6d

and at the concave region,

FIG. 1. sad Schematic illustration of the experimental setup.
sb-1d Irregular translational motion of a droplet with a volume of
0.017ml. Images of the droplet at every 1 s are shown on the bro-
ken line, which shows the trace of droplet motion.sb-2d Time trace
of the speed and direction of motion.sc-1d sLeftd Vectorial motion
of a droplet with a volume of 10ml. Images of the droplet at every
1 s are shown on the broken line, which shows the trace of droplet
motion.sRightd Morphology of the droplet at 2.0 s.sc-2d Time trace
of the speed and direction of motion.

FIG. 2. Spontaneous motion of a droplet with a volume of
400 ml, exhibiting fission into small droplets.
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USUdc

dr
U

conc
DU = sc0 − GdÎa + b

D

I1sR̃d

I0sR̃d
, s7d

where G=saca+bcwd / sa+bd, R̃=Îsa+bd /DR, and
I0,I1,K0,K1 are modified Bessel functions. Therefore,

g2 = bFUSUdc

dr
U

conv
DU − USUdc

dr
U

conc
DUG

= bsc0 − GdÎa + b

D SK1sR̃d

K0sR̃d
−

I1sR̃d

I0sR̃d
D . s8d

Here, we assume 0,kA=d!1. Whenk!1,

g2 − g1 < − aAk2 +
8bGAk2

p2 , s9d

and whenk@1,

g2 − g1 < − aAk2 +
8bGAk2

p2lnh8Ak2/fp2Îsa + bd/Dgj
. s10d

This meansg2−g1,0 when k@1, andg2−g1.0 when k
!1. Sinceg2−g1=0 at k=kc,

kc =
p2

8d
Îa + b

D
expF3bsc0 − Gd

2a
G . s11d

From the above discussion, it is clear that the perturbation
increases whenk,kc. This means that for largerG, kc is
smaller, i.e., the critical volume at the mode transition in-
creases.

To verify this analysis, we performed experiments where
G was changed by covering the dish and increasing the pen-
tanol concentration in the aqueous phase. When the dish was
covered andG increased, the motion of a droplet with a
volume of 1.3ml changed from vectorial motion to irregular
translational motionsdata not shownd. When the concentra-
tion of the aqueous phase was 2.4 vol % andG increased, the
critical volume at which the mode change is induced in-
creases as shown in Fig. 3. These results correspond well to
our theoretical expectation.

In the present study, we found that mode selection in the
spontaneous motion of an alcohol droplet is induced by a
change in the droplet volume. This mode selection is
achieved as the result of the competition in the length scale
between the droplet size and the wavelength of the instability
due to the Marangoni effect. The characteristic wavelength is
a function of rates of evaporation and dissolution. The

FIG. 3. Phase diagram of the mode of droplet motion.sUpperd
The alcohol concentration of the aqueous phase is 2.3 vol %.
sLowerd The alcohol concentration of the aqueous phase is
2.4 vol %. Irregular translational motion atshd; vectorial motion at
sPd; fission into smaller droplets atssd. When the volume was less
than 0.1ml, we hypothesize that the volume is proportional to the
3/2 power of the cross section of the droplet. In the shaded regions,
the mode of the droplet motion is not decisive to a single specific
mode.

FIG. 4. sad Schematic illustration of the tractable model.sbd
Relationship between the wave number of Marangoni instability
and the size of a droplet. Closed and open circlessP, sd corre-
spond to the eigenvalues of the sine wave around the droplet.sb-1d
When there are no eigenvalues where the wave grows, the droplet
cannot break symmetry and shows irregular translational motion
due to the small fluctuation along the periphery.sb-2d When only
the fundamental wave is slightly unstable, the droplet exhibits vec-
torial motion by keeping an asymmetric morphology, as in Fig.
1sc-1d. sb-3d When the wave number of the maximum instability
ssd grows on a large enough droplet, fission into smaller droplets
occurs.

FIG. 5. Schematic representation on the interfacial tension dif-
ference. As the interface is assumed to be circular with the radius of

R, the concentration profile issc0−GdK0fÎsa+bd /Drg /K0sR̃d at the

convex regionsupperd, and sc0−GdI0fÎsa+bd /Drg / I0sR̃d at the
concave regionslowerd. The interfacial tension is proportional to
the gradient of the concentration at the interface; see text.
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present results may shed light on how biological motors re-
alize chemomechanical energy transduction under isothermal
conditions with high efficiencyf17–19g.
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